Processing and Segmentation of Human Teeth from 2D Images using Weakly Supervised Learning

Abstract

Teeth segmentation is an essential task in dental image analysis for accurate diagnosis and treatment planning. While supervised deep learning methods can be utilized for teeth segmentation, they often require extensive manual annotation of segmentation masks, which is time-consuming and costly. In this research, we propose a weakly supervised approach for teeth segmentation that reduces the need for manual annotation. Our method utilizes the output heatmaps and intermediate feature maps from a keypoint detection network to guide the segmentation process. We introduce the TriDental dataset, consisting of 3000 oral cavity images annotated with teeth keypoints, to train a teeth keypoint detection network. We combine feature maps from different layers of the keypoint detection network, enabling accurate teeth segmentation without explicit segmentation annotations. The detected keypoints are also used for further refinement of the segmentation masks. Experimental results on the TriDental dataset demonstrate the superiority of our approach in terms of accuracy and robustness compared to state-of-the-art segmentation methods. Our method offers a cost-effective and efficient solution for teeth segmentation in real-world dental applications, eliminating the need for extensive manual annotation efforts.

Publication
2023 World Symposium on Digital Intelligence for Systems and Machines
Viktor Kocur
Viktor Kocur
WP3 Researcher
Lukáš Gajdošech
Lukáš Gajdošech
WP3 Researcher